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1 Introduction 

1.1 Motivation 

As per the project brief [1], the main motivation for this project is to create a 
solution to the inconvenience of playing drums. Real drums are loud, expensive and 
take space. Moreover, playing drums is not completely healthy. Several studies have 
shown that drumming contributes to hearing damage [2] and causes neurological 
and musculoskeletal injuries [3]. 

1.2 Proposed Solution 

The proposed system utilises MEMS1 technology to allow motion tracking of a 
drumstick in the air. This is achieved through the use of triple-axis angular rate 
sensors (gyroscopes), linear acceleration sensors (accelerometers) and hall-effect 
magnetic sensors (magnetometers2). When the data from these sensors is fused, an 
Earth-referenced orientation of the stick is produced. By monitoring the acceleration 
peaks, a signal processing algorithm is able to detect air strikes. These strikes 
wirelessly trigger drum sounds on a mobile device via Bluetooth. The system can 
also derive the loudness of the sound – which is proportional to the peak in angular 
velocity prior to a strike, and the type of drum that is being struck – which is 
dependent on the orientation of the drumstick at the time of striking.  

Thanks to efficient time management, an extension to the originally planned work 
was made. An LSTM based neural network is utilised for more general motion 
detection. To train the network, a novel method in the form of a computer game is 
proposed that can efficiently label much data. Moreover, a relationship between the 
acceleration and the angular velocity is discovered that allows prediction of air 
strikes before they occur.  

The resulting system is a compact PCB that has all the functionalities above and 
fits inside a drumstick. It is powered by a tiny 130𝑚𝑚𝑚𝑚ℎ battery which can last 
weeks depending on the usage. The final design also includes an encapsulation of 
the product which is suitable for 3D printing or lathing. The testing results and 
feedback from drummers confirm that the system’s performance is at a professional 
level.

                                      
1 Microelectromechanical Systems 
2 Also referred to as a compass. 
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2 Background and Literature Review 

The concept of air-drumming and virtual drumming is not new and there have been 
several studies conducted in this area; however, none of them have found a complete, 
high-quality and portable solution. This section reviews these studies as well as some 
novel techniques that can be adapted to improve on the existing work. 

2.1 Current Developments 

Okada et al. have exploited a camera-based motion sensing device and a projector 
to realise the idea of virtual drumming [4]. They project an image of circles - which 
correspond to drums - on a flat screen and hit them with a drumstick. The camera 
tracks the drummer’s hands to detect a strike. However, their results show that the 
system is inaccurate, making it hard to produce a meaningful drum beat. 
Furthermore, it requires a flat area for projection, a camera and a computer, which 
defeats the idea of portability. 

Kanke et al. manage to partially solve the portability issues with drumming by 
attaching accelerometers and gyroscopes to a drumstick [5]. Their idea is to 
substitute less frequently used drums, such as accent notes, with virtual ones. By 
looking at the acceleration and the angular velocity of the drumstick they manage 
to differentiate between a drum strike and a strike in the air. However, their system 
could not detect air strikes reliably and resulted in false positives and false negatives. 
It did not solve the portability issue completely either. 

A more lightweight solution, that completely removes hitting surfaces is proposed 
in [6]. The suggested system requires a pair of motion sensors, attached to the 
drummer’s arm. The acceleration data from the sensors is fed into a multilayer 
perceptron (MLP) [7], which decides whether the data corresponds to a strike. 
Although, this work proves the possibility of using a machine learning algorithm for 
air strike classification from acceleration data, the final product did not meet the 
standards required for professional music-making. Firstly, the author mentions that 
the velocity detection was not accurate and not always representative of the 
drummer’s intentions. Furthermore, the response rate of the system was 124𝐻𝐻𝐻𝐻, 
which would result in a high latency jitter ≈ 8𝑚𝑚𝑚𝑚; this was also noticed by 
evaluators of the product. In addition, the method for measuring latency was not 
quantitative, but rather objective. Another issue with the work is the method for 



2  Background and Literature Review 

4 
 

labelling data1, which was highly inefficient, and prone to making mistakes. Lastly, 
the system was not wireless, which increased the inconvenience and decreased 
portability.  

To summarise, the previous work provides some inspirations for this project. It also 
shows many gaps that can be improved.  

2.2 Drumming Recognition 

An air drumming system should take some motion data as an input, and output 
three things: a Boolean that tells whether the input corresponds to a strike; the 
velocity of that strike; the virtual drum this strike belongs to. Each of these outputs 
is a subproblem that needs to be solved. 

2.2.1 Strike detection 
In this paper the process of determining whether the motion data corresponds to a 
strike will be referred to as strike detection. 

As seen in the developments section, there are two common ways of collecting 
motion data – with a camera or with inertial sensors. 

Using a camera has several advantages. For example, it can directly give information 
about the position and orientation of an object within the field-of-view; velocity and 
acceleration can be easily derived with finite difference methods. However, image 
processing algorithms are relatively demanding, and more than a cheap 
microcontroller would be needed to execute them. What is more, the response rate 
would be inherently low due to the low frame rate of the camera. Lastly, cameras 
require extra setup which impacts portability. 

The other option, and the one used in this project, is MEMS inertial sensors. They 
come in small, surface mount packages, and can fit inside a drum stick. Although 
the information they provide directly is more limited than a camera – only 
acceleration and angular velocity – there are algorithms that can derive orientation. 
Apart from portability, their biggest advantage over cameras is the response rate, 
which peaks at over 1000𝐻𝐻𝐻𝐻.  

Current developments have tracked different parts of the arm as well as the 
drumstick to detect strikes, but none of them has given a reasoning for their choice. 
The motion of the upper arm, lower arm, wrist and drumstick have been captured 

                                      
1 Data labelling is a process, required for all supervised machine learning algorithms. More 
information is given in section 2.3. 
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in [8]. The results show that the most information is conveyed by the motion of the 
drumstick, since all other parts are almost stationary (Figure 2.1). 

 

 
a) b) 

Figure 2.1.  a) the locations of four markers that were placed on a drummer. b) the trajectories of these 
markers while playing. (Adapted from [8]) 

The definition of an air strike needs to be defined first, before creating an algorithm 
that can detect it. In this work, an air strike is the event at which the tip of the 
drumstick sharply changes direction from going down to going up. By applying 
trivial logic, this also means that the vertical velocity of the drumstick will change 
sign (cross the zero axis), and there will be a peak in the vertical acceleration of the 
drumstick. Although this definition was created through a thought experiment, 
there is also a paper [9] that leads to the same conclusion. Therefore, a strike 
detection algorithm would be looking for peaks in acceleration. 

2.2.2 Velocity detection 
A high-performance air drumming device should be able to produce a wide dynamic 
range of sound levels: that is, the user should have the ability to finely control the 
loudness of the generated sound. In real drums this is achieved by striking the drum 
with more force.  

A study by S. Dahl et al. compares measurements of the striking velocity, and the 
produced sound level when hitting a drum [10]. The results show a linear 
relationship between the dynamic level and the striking velocity (Figure 2.2). This 
suggests that the peak of the angular velocity of the stick, when a strike occurs, can 
be used to infer the dynamic level. 
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pp – very low dynamic level 
mf – moderate dynamic level 
ff – very high dynamic level 

Figure 2.2.  Linear relationship between the striking velocity and the produced dynamic level of a drum at 
different tempi. (Adapted from [10]) 

2.2.3 Drum detection 
In the context of this work, drum detection means determining which drum does a 
strike belong to; which drum the player intended to hit (e.g. hi-hat, snare, etc.). 
The obvious solution is to track the location of the tip of the drumstick. 
Theoretically, this can be achieved by doing a double integration of the linear 
acceleration from the MEMS sensor. However, as shown in [11], this results in a 
significant drift over time (up to several meters per 10𝑚𝑚). 

However, it is possible to obtain the orientation of the drumstick by integrating the 
angular velocity. The integration drift can be compensated by regularly adjusting 
the orientation to known references such as the Earth’s gravitational force direction, 
and the Magnetic North. These references can be obtained from an accelerometer 
and a magnetic sensor; the process of fixing the drift is called sensor fusion. Many 
algorithms [11, 12, 13] of high complexity have been developed to maximise 
performance. Most of them require dynamic calibration of the sensors and 
optimisations to run on embedded systems, which is beyond the scope of this project. 
Instead, a compiled library from InvenSense will be used, which has been optimised 
for their line-up of sensors. 

Although the position of the drumstick is not available, it has been shown in [6] 
that different drums can be inferred from just the orientation. 

2.3 Machine Learning 

The drumming recognition problems introduced in Section 2.2 are typical problems 
in the field of signal processing. For instance, the strike detection problem can be 
solved using a peak finding algorithm. Although a signal processing approach can 
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produce a very efficient way of solving a problem, the solution would be very specific 
– that is, if a different type of motion was to be found, a completely new algorithm 
would have to be developed for it.  

That is where machine learning comes into play. Machine learning is a fast-growing 
field based on linear algebra and the theory of probabilities. The two major problems 
in machine learning are regression and classification: regression is concerned with 
fitting a representative line (or a hyperplane in problems of higher dimensions) to 
some data; classification, on the other hand, tries to find a curve/surface that 
separates some number of classes of data [14] (Figure 2.3). The strike detection 
problem in this project is a classification problem in which the two classes are 
“strike” and “no strike”, and the input to the problem is the motion data. 

 
Figure 2.3.  Dummy data that is classified by a neural network. The black line is called the decision boundary. 

A new point will be assigned to: class 1 if it is above the boundary; class 2 otherwise. 

2.3.1 Neural Networks 
The most basic building block of a neural network is the perceptron (Figure 2.4). It 
takes some number of inputs and outputs their weighted sum [15]. Often, the 
weighted sum is processed by a non-linear function 𝑓𝑓(⋅) called the activation 
function. A single perceptron is usually not useful – that is why many perceptrons 
are stacked in many layers to create a network called a Multilayer Perceptron 
(MLP). The activation functions in an MLP allows non-linear decision boundaries 
like the one in Figure 2.3 to be created.  
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Figure 2.4.  A single perceptron. The weights 𝑤𝑤𝑖𝑖 allow the perceptron to prioritise certain inputs. The bias 

term 𝑏𝑏 allows the perceptron to shift the decision boundary up and down. The bias term is usually not 
included in diagrams. 

The mathematical expression of a perceptron is: 

 𝑦𝑦 = 𝑓𝑓 ��� 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖

� + 𝑏𝑏� (2.1) 

The term learning in machine learning means finding the weights that create a 
decision boundary to best separate the classes. 

A more advanced building block in neural networks is the Long Short-Term Memory 
(LSTM) cell (Figure 2.5). Unlike the perceptron which can only do inference based 
on the current inputs, the LSTM cell has memory and its output is also based on 
the previous state of the network.  

 
Figure 2.5.  LSTM cell structure. Note that the inputs and the outputs of the cell are matrices and not a 
single value. 𝑿𝑿 is the output from the previous layer in the neural network. 𝑯𝑯 is the output of the current 

layer of the network. 𝑪𝑪 is the cell state. 𝑡𝑡 and t-1 denote the timestep. (Adapted from [16]) 

The main idea behind the LSTM cell is the cell state, which is represented as the 
horizontal line on the top of the diagram above [16]. Information is selectively added 
or removed in the cell state by the so called gates. 
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The first gate is called the forget gate and it is mathematically described by (2.2) 
(note that 𝒃𝒃𝑓𝑓 is the bias term). It takes 𝑿𝑿𝑡𝑡 and 𝑯𝑯𝑡𝑡−1 as inputs and outputs a number 
between 0 and 1 – a 0 fully forgets the previous state, while a 1 fully passes it 
through. 

 𝒇𝒇𝑡𝑡 = 𝜎𝜎(𝑾𝑾𝑓𝑓 ∙ [𝑿𝑿𝑡𝑡 | 𝑯𝑯𝑡𝑡−1] + 𝒃𝒃𝑓𝑓) (2.2) 

 𝒊𝒊𝑡𝑡 = 𝜎𝜎(𝑾𝑾𝑖𝑖 ∙ [𝑿𝑿𝑡𝑡 | 𝑯𝑯𝑡𝑡−1] + 𝒃𝒃𝑖𝑖) (2.3) 

 𝒄𝒄𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑾𝑾𝑐𝑐 ∙ [𝑿𝑿𝑡𝑡 | 𝑯𝑯𝑡𝑡−1] + 𝒃𝒃𝑐𝑐) (2.4) 

 𝒐𝒐𝑡𝑡 = 𝜎𝜎(𝑾𝑾𝑜𝑜 ∙ [𝑿𝑿𝑡𝑡 | 𝑯𝑯𝑡𝑡−1] + 𝒃𝒃𝑜𝑜) (2.5) 

Next is the update gate that decides what new information to pass on to the next 
state of the network. It is described by (2.3), (2.4) and (2.6).  

 𝑪𝑪𝑡𝑡 = 𝒇𝒇𝑡𝑡 ∙ 𝑪𝑪𝑡𝑡−1 + 𝒊𝒊𝑡𝑡 ∙ 𝒄𝒄𝑡𝑡 (2.6) 

 𝑯𝑯𝑡𝑡 = 𝒐𝒐𝑡𝑡 ∙ tanh (𝑪𝑪𝑡𝑡) (2.7) 

Lastly, there is the output gate which decides what information the LSTM cell 
should output. The decision is based on the cell state and the inputs of the cell. The 
relevant equations are (2.5) and (2.7). 

The reason that LSTMs are introduced here is because they have been 
outperforming all other models (including CNNs1) in numerous problems such as 
speech recognition [17] and event human activity recognition based on acceleration 
data [18]. Another advantage of LSTMs is that they do not require feature 
engineering; instead, they can directly take the raw data as an input. Lastly, they 
do not need windowing since the network keeps the previous information in the cell 
state. This means that there is no restriction in the length of the motions that can 
be learnt by the network. For more information on windowing and feature 
engineering see A.1 and A.2. 

2.3.2 Training 
As specified above, learning means adapting the value of the weights in the neural 
network so that it can correctly classify the input data. In the beginning, the 
network is initialised with random weights. The output of the network is then 
calculated, and the predicted output is compared to the expected output. If the 
prediction and the expectation do not match, the network is penalised using a loss 
function and the weights are updated using gradient descent to reduce the loss. 

Many loss functions exist, but the one that is most commonly used in classification 
problems is the cross-entropy loss defined by [19]:  

                                      
1 Convolutional Neural Network 
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𝐿𝐿(𝑾𝑾) = − �{𝑡𝑡𝑛𝑛 ln(yn) + (1 − tn) ln(1 − yn)}

𝑁𝑁

𝑛𝑛=1

 (2.8) 

Where 𝑡𝑡𝑛𝑛 is the expected output of the network, 𝑦𝑦𝑛𝑛 is the actual output and 𝑁𝑁 is 
the number of classes. Note that the loss function is a function of the weights and 
the best weights aim to minimise it. 

Training is always done on a portion of the dataset which is usually about 70% of 
the whole data. This is called the training data. The remaining 30% are called the 
validation data. The validation data is used to test the model on unseen data. 

2.3.3 Activation Functions 
Activation functions are non-linear functions that either squish an infinite space 
into a finite one (tanh and sigmoid) or rectify it (ReLU) (Figure 2.6). They are used 
in every neural network cell, which allows the network to classify data that is not 
linearly separable.  

Tanh Sigmoid ReLU 

   
𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑦𝑦𝑖𝑖) 𝜎𝜎(𝑦𝑦𝑖𝑖) =

1
1 + exp (−𝑦𝑦𝑖𝑖)

 𝑚𝑚𝑡𝑡𝑥𝑥(0, 𝑦𝑦𝑖𝑖) 

Figure 2.6.  An example of the most common activation functions and their mathematical representations. 
(Equations reproduced from [14]) 

Another important activation is the softmax. The softmax is usually used on the 
output layer of a network. It converts the outputs of the network to a probability 
distribution [14]. The softmax is defined by: 

 𝑚𝑚𝑠𝑠𝑓𝑓𝑡𝑡𝑚𝑚𝑡𝑡𝑥𝑥(𝑦𝑦𝑖𝑖) =
exp (𝑦𝑦𝑖𝑖)

∑ exp (𝑦𝑦𝑗𝑗)𝑗𝑗
 (2.9) 

Where 𝑤𝑤 is the number of the output perceptron and the sum in the denominator 
iterates through all outputs of the network. 

2.3.4 Overfitting, Underfitting and Regularisation 
Complex networks with many layers and cells have the ability to create decision 
boundaries of a complicated shape by making the values of the weights big. 
Sometimes this can be a drawback since the network may learn things that are not 
useful for classification – for instance, noise in the data (Figure 2.7, right). A 
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network that is overfitting will usually have an extremely low loss with the training 
data, but a significantly higher loss with the validation data.  

Underfitting Good fitting Overfitting 

   
Figure 2.7.  An example of underfitting and overfitting. Note how in the overfitting case, the decision 
boundary perfectly separates the scattered data. However, this scatter is due to noise and the decision 

boundary is not representative of the actual data that generated the distributions. On the good fitting example, 
the training algorithm has allowed some misclassification in an attempt to make the model generalise with 

unseen data. Too much generalisation resulted in underfitting (left) and the model could not learn the 
features of the distributions. 

One solution to overfitting is regularisation. Regularisation adds additional penalty 
to the loss function that prevents the weights from becoming big. A common 
regularisation is the 𝑙𝑙2 norm of the weights ‖𝑾𝑾‖2

2, also known as 𝑙𝑙2 regularisation. 
To regularise a loss function, the 𝑙𝑙2 norm is simply added to it: 

 𝐿𝐿(𝑾𝑾) + 𝜆𝜆‖𝑾𝑾‖2
2 (2.10) 

Where 𝜆𝜆 is a user-controlled parameter that controls the strength of regularisation 
[20]. If the regularisation is too high, the network is called to underfit – that is, it 
cannot learn the features of the data well (Figure 2.7, left). 

2.4 Music Data Transmission 

The background so far has covered how to detect a strike, its velocity and the type 
of drum that has been struck. The next step would be to send a triggering signal to 
a program that will generate a sound when a strike is detected. This can be done 
via MIDI. 

2.4.1 MIDI  
The Musical Instrument Digital Interface (MIDI) is the most widespread 
communication protocol for efficient musical information transmission [21]. It 
provides a standardised, message-based protocol which describes how a piece of 
music should be played. The relevant MIDI messages for this project are: the note-on 
message (Figure 2.8), which instructs the software to play a sound; and the note-off 
message, which instructs the software to stop playing a sound.  



2  Background and Literature Review 

12 
 

 
Figure 2.8.  The MIDI note-on message structure. The user-modifiable values are in the white blocks. This 
type of message triggers a sound to start playing. The channel for percussion applications is 0x09. When 

using this channel, the notes are mapped to different drum sounds (see Table C.1). The velocity determines 
the loudness of the sound. 

According to the MIDI specification [21], every note-on message should have a 
corresponding note-off message; this prevents the musical program to play a sound 
forever. Since drum sounds naturally decay over time, the note-off message does not 
affect how sound is played. Therefore, the note-off can be send together with the 
note-on for convenience (this is called a running status message [22]). A typical 
MIDI messages to trigger a drum sound would look like this: 

 
Figure 2.9.  The format of a drum message. Note that the channel in the status byte has been set to 9 (the 

drum channel). The last 2 data bytes act as a note-off by setting the velocity to 0. 

Although MIDI is perfect for musical data transmission, it is a wired protocol. To 
improve the portability of the air drumming system, a wireless protocol should be 
used. 

2.4.2 MIDI Over BLE 
Bluetooth Low Energy (BLE) is a version of Bluetooth that is optimised for low-
power devices and it can reach speeds of 2𝑀𝑀𝑏𝑏/𝑚𝑚 [23]. It achieves this by sending 
data in bursts, rather than continuously streaming.  

BLE uses the Generic Attributes (GATT) profile to transmit data between devices. 
This profile describes how data is transferred using BLE. It contains services and 
characteristics (Figure 2.10). A service is simply a collection of information; its 
purpose is to logically separate one type of data from other types of data by their 
category. The service contains characteristics: the characteristic is simply a 
placeholder for some data (for instance, a sensor reading, or a MIDI message). 

Status Byte Data Bytes

Note On Channel Note = [0, 127] Velocity = [0, 127]

1 0 c0 1 c c c 0 n nn n n n n 0 v vv v v v v

1 0 0 1 1 0 0 1byte 0 (Status Byte)
0 n n n n n n nbyte 1 (Data Byte)
0 v v v v v v vbyte 2 (Data Byte)
0byte 3 (Data Byte)
0byte 4 (Data Byte)

n n n n n n n
0 0 0 0 0 0 0
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Figure 2.10.  An example of a GATT profile. Each service and characteristic is identified by a UUID1 

(adapted from [24]) 

BLE-MIDI is simply a BLE service in which the characteristic is the MIDI message. 
The BLE-MIDI message is identical to the MIDI message, apart from a millisecond 
timestamp that is appended to the front of it (Figure 2.11). The timestamp is 
necessary since BLE buffers the MIDI messages and sends it in timed intervals. The 
timestamp tells the receiving device exactly when each data was created so that it 
can play the sounds with the right timing. 

The utilising of BLE-MIDI allows for a completely wireless system. 

 
Figure 2.11.  BLE-MIDI message structure. The first two bytes contain the 13-bit, millisecond resolution 

timestamp generated by the microcontroller. The rest of the message follows the typical legacy MIDI 
structure. (Adapted from [25]) 

                                      
1 Universally Unique Identifier 

Profile

Service

Characteristic

Characteristic

Characteristic

Service

Characteristic

Characteristic

1 0 0 1 1 0 0 1byte 2 (Status Byte)
0 n n n n n n nbyte 3 (Data Byte)
0 v v v v v v vbyte 4 (Data Byte)
0byte 5 (Data Byte)
0byte 6 (Data Byte)

n n n n n n n
0 0 0 0 0 0 0

1 0 timestamp_highbyte 0 (Header Byte)
0 timestamp_lowbyte 1 (Message Timestamp Byte)
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2.5 Sensor Data Acquisition 

The most common interfaces for data transmission are the Serial Peripheral 
Interface (SPI), Two Wire Interface (TWI) and Universal Asynchronous Receiver-
Transmitter (UART). The main benefits of the last two are that they require less 
connections between the communicating systems. However, this significantly affects 
their speed [26]. That is why SPI will be used in this work.  

An SPI network usually consists of a single master (the microcontroller) and 
multiple slaves (the sensors) as shown in Figure 2.12. When the master wants to 
read from or write to a slave, it changes the value of the Slave Select (SS) line of 
that slave to active. The master then generates a clock signal on the Signal Clock 
(SCK) line and transmission starts on the Master In Slave Out (MISO) and Master 
Out Slave In (MOSI) lines [27]. 

 
Figure 2.12.  A typical SPI connection. (Adapted from [27]) 

The first byte (address byte) of an SPI transaction consists of a 7-bit register which 
is ORed with a read (1) or write (0) flag bit that determines the type of the 
transaction (Figure 2.13). The following bytes are the data. Due to the availability 
of two data lines, reading and writing can be performed simultaneously.  

 
Figure 2.13.  SPI bytes format. (Adapted from [27]) 

SPI Master SPI Slave 1

SPI Slave 2

SS1
SS2

SCK
MISO
MOSI

SS

SCK
MISO
MOSI

SS

MSB LSB

D7 D6 D5 D4 D3 D2 D1 D0

MSB LSB

R/W A6 A5 A4 A3 A2 A1 A0Addres format

Data format
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2.6 Real-Time Operating System 

A few different tasks were covered so far: data acquisition, drumming recognition 
and music data transmission. For air drumming, all of these need to work 
concurrently. However, all of these tasks run at different rates so they cannot simply 
be implemented in a loop. FreeRTOS is a type of operating system that runs on 
microcontrollers. The main benefit of using it is that it allows different tasks to run 
independent from each other and at different rates. If multiple tasks have to run at 
the same time, the operating system chooses the one with the highest priority and 
runs it first [28]. 

Apart from allowing concurrency, using FreeRTOS would also make the code more 
modular, flexible and easier to maintain. 

2.7 Performance Metrics 

In order to evaluate and compare systems, there should be some common quantities 
that define their performance. None of the previous works have explicitly defined 
such measures. This paragraph proposes some performance metrics in the context 
of air-drumming. 

2.7.1 Latency 
Latency is a measure of the time that passes between an air strike and the sound 
being played; it is a fundamental metric that defines the quality of a digital music 
instrument. Latency that is high or jittery will make the instrument feel clumsy and 
unnatural to play, and it can greatly reduce performance.  

Jack et al. [29] have found that the subjective impression of a percussionist about 
the quality of an instrument degrades as the latency and latency jitter increase. A 
rule of thumb, created by Wessel [30], is that an unnoticeable latency will be no 
more than 10ms, and the maximum latency jitter should be 1ms. 

2.7.2 Predictability 
Predictability means that the instrument should behave according to the player’s 
intentions: that is, the player should be able to predict what the output of the 
instrument will be before performing an action. 

In the context of air-drumming three things can be measured for predictability: 
strike detection, velocity detection and drum detection. To measure each of them, 
we could ask a drummer to perform 𝑁𝑁 number of hits (𝑁𝑁 should be large) and count 
the number of hits 𝑁𝑁𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 that produced a sound that matched the drummer’s 
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expectation. Then (2.1) is a probabilistic confidence level that measures the 
predictability of the instrument. 

 𝑁𝑁𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡: 𝑁𝑁 (2.1) 
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3 System Architecture 

The aim of this section is to provide a brief overview of the system that was built 
in this work and give some context to the background section. A system overview 
is presented in Figure 3.1. On the left, there are the three sensors for motion. They 
are connected to the microcontroller via SPI. The microcontroller acquires the sensor 
data and performs sensor fusion, strike detection, velocity detection and drum 
detection. Strike detection is performed with both a system processing and machine 
learning algorithm. Lastly, a musical message is wirelessly sent via BLE-MIDI if a 
strike is detected. All these tasks are handled by FreeRTOS. 

On the receiving side there is a computer/smartphone connected to a speaker. If the 
computer receives a BLE-MIDI message, it plays the sound of the corresponding 
drum with the requested loudness. 

 
Figure 3.1.  A simplified diagram of the proposed system.  
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4 Hardware Implementation 

This section presents the hardware implementation. Two printed circuit boards 
(PCBs) were created for this project. The first one – the development board – was 
relatively big, with redundant hardware and pin headers for functionality extension. 
This board was used to develop a proof-of-concept, but it also allowed extra 
hardware to be connected to the microcontroller for testing, and data could be easily 
acquired through an UART-to-USB bridge. The second one – the pilot board – was 
a stripped-down version of the development board. It only contained the necessary 
features for an air-drumming device. It was made extremely compact so that it fits 
inside a drumstick. 

4.1 The Development Board (Prototype 1) 

The development board (Figure 4.1) is based around the nRF52832 by Nordic 
Semiconductor. This is a microcontroller with integrated BLE support. It is built 
around an ARM Cortex-M4 CPU and it has a floating point unit which is ideal for 
fast calculations. The system clock is 64𝑀𝑀𝐻𝐻𝐻𝐻. In addition, the chip comes with an 
example-rich Software Development Kit (SDK) and a large community, which 
makes software development fast and easy. 

 
Figure 4.1.  An image of the development board with labels of all its modules. 

The accompanying hardware is presented as a block diagram in Figure 4.2. On the 
left there are two power sources: a battery and a USB port. They are connected to 
a power selector, which allows the power source to be selected. 



 

 
 

20 

4  H
ardware Im

plem
entation 

 

Figure 4.2.  A logical block diagram of the development board. 
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The unregulated power from the power selector is then distributed to two switching 
voltage regulators: one for the 3.3𝑉𝑉 circuitry and one for the 1.8𝑉𝑉 circuitry. There 
is also a battery charging IC which gets power from the USB port.  

The FTDI block resembles a USB-to-UART converter; this is achieved by the 
FT230X chip. The communication speed is limited to 1𝑀𝑀 𝐵𝐵𝑡𝑡𝐵𝐵𝐵𝐵 by the 
microcontroller. This is just enough to log the data from all sensors at their highest 
output rate.  

Next in the diagram is the sensors block. It is realised by the ICM-20948 IC, which 
integrates tri-axial accelerometer, gyroscope and magnetic sensors. Since the 
operating voltage of this IC is 1.8𝑉𝑉, whilst that of the microcontroller is 3.3𝑉𝑉, there 
is a voltage translator in between. The translation is performed by the TXB0106. 

On the right of the microcontroller there are 5 LEDs for status indication of the 
system and a button for fast input from the user.  

Lastly, there is the 2450AT18B100 chip antenna which is connected through an 
impedance matching network to the microcontroller. The component values for the 
matching network were taken from the reference design documents of the nRF52832 
[31]. Schematics of the development board and its stick mount are available in 
Appendix B. 

4.2 The Pilot Board (Prototype 2) 

Based on numerous tests and evaluation with the development board, a few 
hardware modifications were made that resulted in the pilot board.  

 
Figure 4.3.  A rendering of the pilot board with labels of all its modules. 

Since the aim of the pilot board is to only have the essential components and be as 
tiny as possible, all components for data logging and hardware expansion have been 
removed since they are not needed in the final product.  

Apart from removed hardware, the pilot board also has some modifications when 
compared to the development board. The sensor IC on the development board  
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Figure 4.4.  A logical block diagram of the pilot board.

3.0V

3.0V

3.0V

3.0V

Power
Digital
Analog

RF



4  Hardware Implementation 

23 
 

required a 1.8𝑉𝑉 supply and communication with the compass required an SPI to 
TWI conversion, which was slow and unreliable. These problems were solved by 
replacing the ICM-20948 with ICM-20602 (accelerometer and gyroscope) and 
LIS2MDL (digital compass). The replacement sensors have the same characteristics 
as the original one but can be powered by a 3.0𝑉𝑉 supply and support SPI natively. 
As a consequence of the sensor replacement, the 1.8𝑉𝑉 regulator and the voltage 
translator were removed, which saves PCB area and cost. 

Another major hardware upgrade in the pilot board is the power block. In the new 
board, power is only supplied from the battery. To allow long stand-by times, an 
on/off manager chip (STM6600) disables the voltage regulator when the device is 
not in use. It can be reenabled by pressing the button. The switching regulators 
from the development board were replaced by a linear one (MIC5501) since the 
switching noise could be observed in the sensor measurements. The regulated 
voltage was also changed from 3.3𝑉𝑉 to 3.0𝑉𝑉 because this way the internal 
microcontroller regulators are more efficient [32].  

Schematics of the pilot board and its casing are available in Appendix B.
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5 Drum Recognition 

5.1 Strike Detection – the Signal Processing Approach 

As mentioned in the background section, strike detection is a typical signal 
processing problem which includes some peak detection and filtering. 

5.1.1 Simple Peak Detection 
From calculus it is known that a peak in a signal (a.k.a. local extremum) occurs 
when the first derivative of the signal is zero. The derivative of a discrete signal can 
be found by calculating the average slope between three adjacent points (central-
difference) [33]: 

 𝑦𝑦�̇�𝑡 =
𝑦𝑦𝑡𝑡+1 − 𝑦𝑦𝑡𝑡−1 

2Δ𝑥𝑥
 (5.1) 

Then an algorithm can be implemented to monitor the sign of two adjacent 
measurements of the vertical acceleration’s derivative; a difference in the signs 
means a zero-crossing (Figure 5.1).  

 
Figure 5.1.  A state diagram of a simple peak-finding algorithm. 

5.1.2 Improved Peak Detection 
Although the algorithm above would find all strikes, it would also get triggered by 
noise and other motion of the drumstick that is not a strike but creates an 
acceleration peak.  

Since noise has a much lower amplitude when compared to acceleration peaks caused 
by drumming, it can be filtered by applying a threshold to the amplitude of the 
acceleration data. 

To filter out random, no strike motions, that generate peaks, the width of these 
peaks must be considered. Acceleration peaks due to striking will be much narrower 
than peaks from some random motion. Therefore, a threshold to the width of the 
peak can be applied to filter out the detection of random motion. According to [33], 
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the width of a peak can be inferred from the amplitude of the second derivative of 
the signal. This is shown in the simulated signal in Figure 5.2. 

Generated peaks 

 

Second derivative of generated peaks 

 
Figure 5.2.  Simulated peaks and their second derivative. The derivative of the narrow peak is much bigger. 

Lastly, sometimes the acceleration peak of a strike consists of a few smaller peaks 
(Figure 5.3). To filter this, a time threshold can be added, that sets a minimum 
allowed time between the detection of 2 strikes.  

 
Figure 5.3.  A strike peak consisting of two smaller peaks. 

The state diagram of the improved strike detection algorithm is shown in Figure 
5.4. This algorithm rejects peaks that are wide and are of low amplitude.  
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Figure 5.4.  A state diagram of the improved strike detection algorithm. 

The improved algorithm introduces three new threshold parameters that need to be 
tuned. By experimentation, it was found that the following values result in a robust 
strike detection: 

 𝑡𝑡𝑡𝑡ℎ = 1.953𝑚𝑚𝑚𝑚−2 (5.2) 

 �̈�𝑡𝑡𝑡ℎ = 0.733𝑚𝑚𝑚𝑚−4 (5.3) 

 𝑡𝑡𝑑𝑑𝑡𝑡ℎ = 20𝑚𝑚𝑚𝑚 (5.4) 

5.1.3 Latency Improvement 
It was noticed that when performing a striking motion with the drumstick, the peak 
in the angular velocity leads the peak in acceleration by nearly a constant time 
(Figure 5.5).  

 
Figure 5.5.  The time difference between the peaks of acceleration and angular velocity when performing a 

strike. 

To get more insight, 100 strikes were performed and the time difference between 
the peaks of the angular velocity and the acceleration were recorded. It turned out 
that on average angular velocity peaks lead acceleration peaks by 27.8𝑚𝑚𝑚𝑚 with a 
standard deviation of 3.76𝑚𝑚𝑚𝑚. Despite the introduction of some jitter, using angular 
velocity for strike detection resulted in a more responsive system. 
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The algorithm for detecting angular velocity peaks is the same as in 5.1.2. The only 
difference are the threshold values: 

 𝑡𝑡𝑡𝑡ℎ = 250°𝑚𝑚−1 (5.5) 

 �̈�𝑡𝑡𝑡ℎ = 93.8°𝑚𝑚−3 (5.6) 

5.2 Velocity Detection 

The loudness of a sound can be inferred from the angular velocity of the drumstick 
prior to the strike. Through experimentation, it was found that this is best achieved 
by taking the value of the angular velocity at a peak that corresponds to a strike 
and map it to a range that is compatible with MIDI: 

 [𝑡𝑡𝑡𝑡ℎ, 2047]°𝑚𝑚−1�����������
𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 𝑣𝑣𝑐𝑐𝐴𝐴𝑜𝑜𝑐𝑐𝑖𝑖𝑡𝑡𝑣𝑣 𝑐𝑐𝐴𝐴𝑛𝑛𝐴𝐴𝑐𝑐

→ [27, 127]�������
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝐴𝐴𝑛𝑛𝐴𝐴𝑐𝑐

 
(5.7) 

The MIDI range is the same as a 7-bit unsigned integer. The first 27 values are 
skipped since they produce inaudible sounds. 

5.3 Drum Detection 

The type of drum that is struck is derived from the orientation of the drumstick. 
The orientation information is available from the sensor fusion library discussed in 
section 2.2.3 and is represented in Euler angles. The frame of the drumstick and the 
rotation axes are shown in Figure 5.6.  

 
Rotation around x  (roll) 
Rotation around y  (pitch) 
Rotation around z  (yaw) 

Figure 5.6.  Representation of the drumstick’s frame and definition of yaw, pitch and roll. 

It can be seen from the figure above that the roll of the drumstick is irrelevant to 
the type of drum that is being hit. Based on the pitch and yaw values the 
configuration in Figure 5.7 was created. It provides all basic drums without being 
overwhelming. However, this configuration can be changed to the user’s likings. 
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Figure 5.7.  An example of drum zones. Each arc in the diagram is 60°. 
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6 Motion Classification Generalisation Using LSTM 

This chapter is about work that tries to replace the specific strike detection 
algorithm from section 5.1 with a more general motion classification LSTM network. 
It proposes an innovation in labelling motion data and gives an example of the 
network with strike detection. 

6.1 A Novel Approach for Labelling Motion Data 

As mentioned in the background section, having much labelled data is crucial for 
training a neural network. However, it would be nearly impossible to collect and 
label much data manually. This section introduces a novel method for efficiently 
labelling motion data in the form of a computer game. Although the example given 
is specific to air-drumming, it will become apparent below how this can be easily 
extended to any type of motion. 

This paragraph explains the core idea of the game. The character of the game is the 
white arrow in Figure 6.1 (top, left). Its position is controlled by the orientation of 
the drumstick (e.g. the drumstick must be tilted up, to move the character up etc.). 
The character constantly moves forward (right) in the game’s map, and the player 
(the person that is controlling the character) must make sure that the character 
stays on the blue path by moving the drumstick. If the character goes out of the 
path, the game is over. This means that the shape of the path “controls” the way 
the player moves the drumstick – that is, in order to finish the game, the player has 
to move in a specific way. Therefore, by carefully designing the shape of the path, 
the player can be “forced” to perform the drumming motion in order to stay on the 
path and finish the game. Consequently, since the motion of the drumstick is known, 
the motion data can be labelled. On the other hand, if the player does a different 
motion, the character will get out of the path and the game will be over – the data 
will then be discarded. 

Since multiple sources [6, 18, 34] have confirmed that human activity recognition 
and strike detection using a neural network is possible with acceleration data only, 
only this data is labelled and used in this work. However, it would be trivial to 
adapt the code to label other data such as angular velocity, and orientation. 

To allow easy modifications, the game is made up of sections (Figure 6.1). These 
can be rearranged to alter the length of the map, and the motions that the user 
must make. The only condition is that there should be only one start section and 
only one finish section, and these should be in the beginning and the end 
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respectively. The purpose of these sections is to allow some time for the user to 
adjust the character’s height, and not get out of the path immediately as the game 
starts. Therefore, data is not logged in these sections. 

 
Figure 6.1.  All sections that can be combined to make up a level in the game. These sections have been 

designed to make the player mimic a drumming motion while playing the game. In theory, other path shapes 
can be added to track all sorts of motions. 

Start path Straight path

Curvy path 1 Curvy path 2

Curvy path 3 Finish path
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Figure 6.2.  Plot of the logged acceleration data while passing certain sections of the game. The orange 

bounds represent the parts in which the acceleration data is labelled as “strike”; at any other time, the data is 
labelled as “no strike”. The distinctive acceleration peaks of air strikes are clearly visible at the curvy paths. 

Figure 6.2 shows when data is labelled as a “strike” and “no strike”. When the 
character is in the straight path a “no strike” label is assigned to the data since the 
player is expected to keep the drumstick steady. In the other three cases a “strike” 
label is assigned when the character is inside the curvy part of the path since the 
player is expected to perform a drumming motion.   

Curvy path 1 makes the player perform a smooth and slow strike with the 
drumstick. On the other hand, curvy paths 2 and 3 require a more aggressive strike. 

X
Y
Z
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The reason there are multiple curvy paths is that the neural network will be able 
to learn more types of striking. 

To collect data for network training, 4 players were asked to play the game for a 
total of 2 hours. This resulted in 1100 labelled examples of acceleration data. 

6.2 Strike Detection – the Machine Learning Approach 

TensorFlow r1.13 was the machine learning platform of choice. The reasons for this 
are several: it is developed by Google and it is kept up to date with the latest 
developments in machine learning and artificial intelligence; it has a large 
community for support. The Keras frontend was used as recommended by Google.  

6.2.1 Network structure 
The first thing to be considered was the LSTM network structure. Although this 
can be iteratively derived through evaluation, a good starting point must be found. 
In a study [18], an LSTM network was used to perform human activity recognition. 
Through cross-validation, the researchers have found an optimal network structure 
(Figure 6.3) that achieved 96% classification accuracy. The network takes as an 
input the accelerometer readings from each axis through a linear activation. The 
inputs are then followed by two LSTM layers and a third fully-connected layer with 
a ReLU activation. At the end there are two outputs with a softmax activation. 
Therefore, the output of the network gives the probability of the input acceleration 
data to correspond to a strike. The hyperparameters1 of the table are shown in 
Table 6.1. 

Layer 𝑵𝑵𝒖𝒖𝒖𝒖𝒊𝒊𝒕𝒕𝒖𝒖 Activation Dropout Regularisation 
Input 3 Linear N/A N/A 

LSTM 1 64 
Activation: Tanh 

N/A l2 (𝜆𝜆 = 0.0015) 
Recurrent activation: Sigmoid 

LSTM 2 32 
Activation: Tanh 

N/A l2 (𝜆𝜆 = 0.0015) 
Recurrent activation: Sigmoid 

Dense 16 ReLU N/A l2 (𝜆𝜆 = 0.0015) 
Output 2 Softmax N/A l2 (𝜆𝜆 = 0.0015) 

Table 6.1.  Hyperparameters for the strike detection LSTM network in Figure 6.3. 

                                      
1 All parameters that can be tuned by the user within the network. 
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Figure 6.3.  LSTM network structure. 

6.2.2 Data Pre-Processing 
In order to train the network, the data should undergo a slight formatting first. The 
formatting routine is visualised in Figure 6.4. In the first step, the logged data is 
sliced at the sections where the label changes from “no-strike” to “strike” and vice-
versa. It can be seen that the resulting cuts of “no-strike” data are much longer 
than the rest. It is unlikely that this will bias the network in any way. However, it 
introduces extra data that does not bring any information. Therefore, without loss 
of accuracy, the data is trimmed in the next step. The maximum length of a cut is 
set to 125 samples (this is approximately the size of the longest “strike” sequence). 
At the last step, the data is grouped by label.  

The result of the formatting is two groups of data: one containing examples of the 
striking motion, and one with examples of no motion. Since these groups are 
unbalanced – that is, the “strike” group has less examples than the other – the “no 
strike” group had randomly selected examples deleted to make the groups balanced. 
The reason for this is that an unbalanced dataset might cause biasing towards the 
bigger group when training a neural network. 
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Figure 6.4.  A visualisation of the data formatting process. The plotted data is the acceleration from the three 

axes against time. 

6.2.3 Training 
To train the network, 550 examples of “strike data” and 550 examples of “no strike” 
data were collected. They were split into a training set and a validation set with a 
ratio of 0.7: 0.3 and the data was randomly shuffled. The network was trained using 
stochastic gradient descent; this means that the weights were updated after each 
example.  

The model mentioned above was compiled with the following parameters: 

Loss - Categorical cross-entropy 
Optimiser - Adam 

Metrics - Loss, Accuracy  

Table 6.2.  Model compilation parameters. 
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The Adam optimiser adaptively changes the learning rate based on the first and 
second order moments of the gradients to speed up the convergence of the model 
[35]. The loss and accuracy were recorded at the end of each epoch so that 
convergence and overfitting can be tracked. Figure 6.5 shows that the losses 
converge to virtually 0, whilst the accuracy settles at 1; this means that the model 
successfully learned the data. The fact that there is no gap between the training 
and validation metrics means that the model has generalised well, and it is not 
overfitting. 

 
Figure 6.5.  Plot of the model metrics with epochs. 

Lastly, a confusion matrix was generated (Figure 6.6). It can be seen that the model 
correctly identifies the true class every time, without making any false 
classifications. 

 
Figure 6.6.  Normalised confusion matrix of the trained model. The model correctly identifies the class at 

every instance. 

6.2.4 Pulse Generation 
The network mentioned above can correctly classify drum strikes. However, the 
“strike” output of the network will stay high for a few iterations of the network 
when a strike is detected (from the beginning to the end of the strike peak), rather 
than creating a pulse signal which can trigger a sound. This can be fixed by stacking 



6  Motion Classification Generalisation Using LSTM 

38 
 

a new pulse generation network (Figure 6.7) at the output of the one above. The 
output of this network only goes high on the rising edge of the “strike” output from 
the LSTM network.  

 
Figure 6.7.  Structure of the pulse generation network. The activation of the Dense layer is ReLU; the 

activation of the output is a sigmoid. 

This new network takes as inputs the “strike” output from the LSTM network above 
at times 𝑡𝑡 and 𝑡𝑡 − 1. This way, it can track when the “strike” signal changes from 
low to high and output a pulse. To achieve the functionality above, the network 
was trained with the following artificially created data: 

Striket Striket-1 MIDI trigger 
0 0 0 
1 0 1 
0 1 0 
1 1 0 

Table 6.3.  Training data for the pulse generation network. 

6.2.5 Increasing Performance 
Since the neural network is used for real-time classification, it is important that the 
forward pass is as fast as possible. One way to achieve this is by reducing the number 
of mathematical operations (e.g. by reducing the number of units in the layers). It 
was found that by reducing the number of units in layers LSTM 1 and LSTM 2 to 
16, the performance of the system increased by a factor of 8.2, while the accuracy 
did not change at all. 
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7 System Integration 

7.1 Encoding for Data Logging 

Data logging to a computer was required for numerous reasons: visualising sensor 
data, training a neural network, creating a peak-finding algorithm etc. The output 
rate of the data in this project is pushing the limits of the UART speed of the 
microcontroller. That is why an efficient communication protocol had to be created. 

The microcontroller sends data to the computer in the form of frames. An example 
of a frame is shown in Figure 7.1.  

 
Figure 7.1.  A typical frame from the microcontroller. Sensor data is usually stored in 16-bit variables, so a 

single sensor reading is split into 2 bytes.  

Although it might seem trivial to reconstruct the data from that frame, it is much 
harder in reality since the computer does not know when a frame starts and finishes. 
That is why the data has to be encoded on the transmitting side and decoded on 
the receiving side. 

A common approach for framing serial data is the “flag bytes with byte stuffing” 
method [36]. Flag bytes are predefined byte values that mark the beginning and the 
end of a frame (Figure 7.2). 

 
Figure 7.2.  The frame has been surrounded by a start flag and end flag bytes. (Adapted from [36]) 

A problem with this approach is that at some point the transmitted data will have 
the same value as the flag bytes. The solution is to prepend another special byte 
called an escape byte (ESC) every time a byte in the transmitted data is equal to 
the start flag, the end flag or the escape byte itself. This is illustrated below. 

 
Figure 7.3.  An example of a frame, that has ESC and the end byte as some of its values (top). The bottom 

shows how this message can be “escaped”. (Adapted from [36]) 
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By utilising this encoding scheme, the computer is able to synchronise with the data 
from the drumstick. 

7.2 Producing a Sound 

So far, the system has the ability to detect a strike, its velocity and the type of 
drum that was struck. However, the drumstick still has to inform a musical software 
on a mobile device to play a sound on the occurrence of a strike. The mobile device 
that was chosen for this work is the 2013 MacBook Pro, and the software that was 
used is GarageBand. An Apple product was chosen, since they generally have a 
much lower audio latency than other brands.  

As specified in the background, the sound triggering signal was sent via BLE-MIDI. 
The microcontroller was set up as a BLE peripheral. A custom MIDI service was 
implemented according to Spockeli’s tutorial [37]. The MIDI service and 
characteristic UUID1s are shown in the table below: 

 UUID 
MIDI Service 03B80E5A-EDE8-4B33-A751-6CE34EC4C700 

MIDI Data I/O Characteristic 7772E5DB-3868-4112-A1A9-F2669D106BF3 
Table 7.1.  Service and characteristic UUIDs for BLE-MIDI [25].  

7.3 Putting Everything Together 

All functionality was integrated in two FreeRTOS tasks: an AFPT2 task that is 
responsible for acquiring data, detecting strikes, velocity and drum type, and 
transmitting MIDI messages; a FUSE task that performs the sensor fusion. The 
need for two tasks comes from the fact that the sensor fusion takes longer to run 
than the required sampling rate of the sensors.  

The AFPT task is activated by a data ready interrupt from the sensor at a rate of 
1.125𝑘𝑘𝐻𝐻𝐻𝐻. The FUSE task runs exactly 4 times slower. Below is a time diagram of 
both tasks. 

                                      
1 Universally Unique Identifier 
2 Acquisition, Fast Processing, Transmission 
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Figure 7.4.  A time diagram of the RTOS tasks. Note how the data ready (DR) interrupt activates the AFPT 
task. Note also that the FUSE task runs 4 times slower. When there is no task running, the microcontroller is 

put into Idle mode to save power. 
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8 Testing and Results 

8.1 Measuring Latency 

As a reminder, the latency is the time between the occurrence of a strike and the 
playing of a drum sound. The definition of a strike was defined to be the sharp 
change in direction of the tip of the drumstick. This event causes a sharp peak in 
the acceleration of the drumstick. 

To measure the latency, the system in Figure 8.1 is proposed. An additional 
analogue accelerometer (ADXL335) is added to the drumstick and its 𝐻𝐻-axis output 
is connected to an oscilloscope. The audio output from the laptop is also connected 
to the oscilloscope. The oscilloscope is set to trigger on the rising of the audio signal 
with a threshold of 8𝑚𝑚𝑉𝑉. A single strike is then performed with the drumstick and 
the time between the acceleration peak and the time at which the sound starts 
playing is measured; this is the latency.  

 
Figure 8.1.  Proposed setup for latency measurement. The audio output from the computer and the z-axis 

output from the analogue accelerometer are connected to an oscilloscope. 

Using the method above, 20 latency measurements were taken for both strike 
detection algorithms: the signal processing one, and the LSTM one. Unintuitively, 
in both cases the sound starts playing before the actual strike has occurred; the 
latency is negative (Figure 8.2). 

BLE
Computer

Oscilloscope

Analogue
accelerometer
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Figure 8.2.  The time difference between an acceleration peak (strike), and the beginning of the drum sound. 

The sound starts playing before the strike, because the algorithm implementation predicts the strike.  

The reason for this in the signal processing approach is due to the latency 
improvement technique that was introduced in section 5.1.3. By using that 
technique, the system was able to predict the hit 27.8𝑚𝑚𝑚𝑚 before it occurs.  

Unfortunately, there is no way to say with certainty why the negative latency occurs 
in the LSTM strike detection due to the complexity of neural networks. Most 
probably the reason for this is the fact that the “strike” label in Figure 6.4 captures 
the whole acceleration curve rather than just the peak. 

It also worth noting that the signal processing algorithm has a much more consistent 
latency than the LSTM one (Figure 8.3). The signal processing algorithm achieved 
a mean latency of −20.7𝑚𝑚𝑚𝑚 with a standard deviation of 1.25𝑚𝑚𝑚𝑚. This small latency 
jitter is due to the finite sampling rate of the sensor 1.125𝑘𝑘𝐻𝐻𝐻𝐻 and the resolution of 
the BLE-MIDI timestamp (1𝑚𝑚𝑚𝑚). The LSTM algorithm has a slightly higher mean 
(−17.2𝑚𝑚𝑚𝑚) and a much higher standard deviation (7.2𝑚𝑚𝑚𝑚). The higher metrics are 
due to the longer time to run the LSTM model (3.77𝑚𝑚𝑚𝑚) since it is significantly 
more computationally expensive than the signal processing algorithm. What is more, 
it is uncertain at which point the LSTM model decides that a strike has occurred, 
which contributes to the higher standard deviation.   
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Figure 8.3.  Latency distribution of 20 strikes from both strike detection algorithms. 

8.2 Measuring Predictability 

The system was tested for predictability of strike detection, velocity detection and 
drum detection by generating three sets of 100 strikes and counting the number of 
times when the strike did not produce the intended sound. 

For the strike detection test, the tester was asked to perform 100 strikes on the 
snare drum with a medium velocity. The resulting predictability was 100%. 

For the velocity detection test, the tester was asked to perform 50 strikes of steadily 
increasing and then decreasing velocity; 35 strikes with a velocity pattern 3 x “low”, 
1 x “high”; and 15 strikes with a randomly chosen velocity on each strike. The 
resulting predictability was 100%. 

For the drum detection test, the tester was asked to perform 50 strikes with the 
pattern 3 x “hi-hat”, 1 x “snare”; then 50 strikes with the pattern “high tom”, 
“snare”. The resulting predictability was 97%. 

8.3 Battery Life 

The battery life of the system was not measured quantitatively so this section will 
try to estimate it. The battery used in the drumstick has a capacity of 130𝑚𝑚𝑚𝑚ℎ. 
The microcontroller draws on average 0.417𝑚𝑚𝑚𝑚 [38], the accelerometer and 
gyroscope together draw 2.790mA [39] and the compass draws 0.200𝑚𝑚𝑚𝑚 [40]. The 
total draw is 3.407𝑚𝑚𝑚𝑚. Then according to (8.1) [41], the battery should last 26 
hours of continuous usage. Implementation imperfections are taken into account 
with the 0.7 factor. 
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 𝑡𝑡𝑏𝑏𝐴𝐴𝑡𝑡[ℎ] = 0.7
𝑐𝑐𝑡𝑡𝑐𝑐𝑡𝑡𝑐𝑐𝑤𝑤𝑡𝑡𝑦𝑦 [𝑚𝑚𝑚𝑚ℎ]

𝑙𝑙𝑠𝑠𝑡𝑡𝐵𝐵 [𝑚𝑚𝑚𝑚]
 (8.1) 
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9 Critical Evaluation 

The outcome of the project greatly exceeded my expectations. When compared to 
all previous work in this field, the proposed system outcompetes their results in 
every aspect. The fact that even professional drummers confirmed the exceptional 
performance of the device and learnt to use it fluently within minutes, means that 
a solid solution has been found for an air drumming system. Moreover, the work 
introduced a completely novel approach for labelling motion data. 

9.1 Portability 

Unlike most of the previous attempts [4, 6], the proposed system in this work is a 
standalone device, that has its own integrated microcontroller and a battery. This 
allows the system to be easily extended to multiple drumsticks and even drum 
pedals without any modifications.  

The resulting PCB is extremely compact, and it can be fit inside a drumstick – this 
is something no one else has yet achieved. What is more, the whole system is 
extremely power efficient, and in theory it can last over a week1 on a single charge 
(although my testing unit lasted 2 months).  

These factors makes the air drumming system a compelling substitution for real 
drums. It is also an excellent option to carry around on tours and trips, since it can 
fit in a backpack and it may not even need a charger depending on the duration of 
the trip. 

9.2 Latency 

Unexpectedly, the system has a negative latency, which is another precedent in the 
field. This means that it can predict a strike and play the sound before it has 
actually occurred. This is largely beneficial for many reasons. Firstly, it allows the 
system to be used with cheap mobile phones and laptops that have inherently high 
latency. Furthermore, it allows vibrational feedback to be utilised. Normally, haptic 
feedback actuators such as piezo actuators and linear resonant actuators have an 
actuation latency of 4 − 20𝑚𝑚𝑚𝑚 [42]. The strike prediction will allow these actuators 
to start vibrating at just the right time. 

                                      
1 Assuming the device is used approximately 3.5 hours per day. 



9  Critical Evaluation 

48 
 

9.3 Predictability 

All previous work done has had significant issues with predictability, making their 
solutions virtually unusable in a professional environment. My device achieved 
100% predictability in strike and velocity detection and 97% in drum detection. 
The 3% error in the drum detection is due to imperfections in the sensor fusion 
algorithm which was not developed as a part of this project but rather an off-the-
shelf library from InvenSense was used. With some extra work on a better fusion 
algorithm, the proposed system would easily become suitable for live performances. 

9.4 LSTM Network 

The proposed LSTM network achieved great results with strike classification with 
accuracy of 100%. However, the data that was presented to train the network 
corresponded to a limited range of orientation of the drumstick and thus the network 
could not recognise strikes outside the trained range. An extension to the game, 
including more section which cover a bigger range of orientations, will likely solve 
this issue. However, this might also require the complexity of the network to be 
increased and consequently a more powerful microcontroller might be needed. 

The more important implication however is the introduction of the data labelling 
game. Collecting much labelled data is a big challenge in machine learning and my 
process is an innovation in the field, which can be extended to applications far 
beyond drumming. 

9.5 Further Work 

As mentioned above, the only part of the air drumming device that is not always 
accurate is the drum recognition. A suggestion for future work would be the 
development of a custom fusion algorithm based on some of the common 
architectures [11, 12, 13]. 

More importantly however, there is plenty of room for expansion. The presented 
work reveals not only a complete and professional air drumming device, but also a 
platform for motion detection based on machine learning. There are endless 
possibilities from creating unseen musical instruments to fields far beyond music 
such as sports, medicine and robotics. Future work would implement other types of 
neural networks and other games that will allow the labelling of any type of motion. 
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9.6 Project Management 

Thanks to good project management, I managed to take the project beyond the 
initial planned work and achieve excellent results. The rough plan of work was set 
out in a Gantt chart in the beginning of the project together with a contingency 
plan (Appendix H). This plan was definitely not a big contributor for short-term 
decisions. However, it was good for indicating when the completed work was leading 
or lagging schedule and it allowed for task rearrangements and including extra work 
after a discussion with my supervisor. Most work went fluently, apart from a one 
month delivery delay due to a mistake of the ordering team. After quick 
rescheduling, this made no negative impact. 

To protect the work from hard drive failure or other data loss, all work was 
automatically backed up online on MEGA and locally on two computers. 
Furthermore, monthly back-ups on a hard drive were done. Most code was also 
stored on private repositories on GitHub. CAD work was backed up remotely on 
Autodesk’s servers. 
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10 Conclusion 

A complete, portable air drumming solution was provided in this work that achieves 
professional level of performance. The proposed system utilises MEMS gyroscope, 
accelerometer and a compass integrated into a drumstick to perform motion 
tracking. Thanks to the utilisation of an SPI connection between the microcontroller 
and the sensors, the proposed device achieves an update rate of 1125𝐻𝐻𝐻𝐻. Two 
algorithms were introduced to perform strike detection. The first one – a signal 
processing based, peak-finding algorithm allowed extremely consistent, low latency 
strike detection, when applied on the acceleration data from the drumstick. The 
latency was further decreased by 27.8𝑚𝑚𝑚𝑚 when this same algorithm was applied to 
the angular velocity of the drumstick. This improvement essentially allowed the 
prediction of drum strikes before they occur. The second algorithm is an LSTM 
based neural network for general motion detection from acceleration data. To train 
it, a game was developed, that introduced a novel approach for efficiently and 
automatically labelling much data. Although with a slightly higher latency and more 
jitter, the LSTM network still performed well. More importantly, it showcased the 
ability of the innovative labelling method. 

The finished system comes in a compact form factor of 10 × 113𝑚𝑚𝑚𝑚. This allows it 
to be placed inside a drumstick or an attachment for a foot pedal, making it 
extremely portable.
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